
Indexing
B-Tree Operations

B+Trees

Data Management and File

Organization

Topics

 Insertion in a B-Tree

 Deletion from a B-Tree

 B+Trees

Insertion in a B-Tree

 Start searching the leaf node to insert the new record

 If the leaf node is full, split it into two nodes.

 Add the smallest key in the new leaf to the internal node.

 Update the tree if necessary

Sample Data File

B-Tree of the Sample Data File (N=2)

Insert <8, B>

Insert <15, X> and <16, T>

Insert <15, X> and <16, T>

Insert <4, Q>

Insert <6, J>

Insertion when the root node is full

 If the root node is full and a new key is to be added to it,

 split the root node into two nodes

 Put last N keys in new node

 Create a new node and put the middle key in it

 Make the new node the new root. (old root and the new node

split from it will be its children)

Split the Root

Deletion from a B-Tree

• When two leaf nodes are merged, a key is removed from the

internal node.

• If after removing a key, the internal node has less than N

keys, it is merged with its neighboring internal node. (Except

the root)

• When only one leaf node is left in the tree, the root is

removed.

Example: Delete 1

Example, Delete 1

Example, Delete 1

B+Trees

 B-Trees are used to find the location of a record in a data file

 The index and data files are two separate files

 B+Tree combines the data and index files in a single tree

 Leaf nodes are used to store data records

Sample Data

Sample B+Tree (N=2)

Exhaustive Reading in Index Files

 Exhaustive reading from a B-Tree needs starting from the

root each time

 In a B+Tree leaf nodes are connected by pointers

 Exhaustive reading a B+Tree is as fast as exhaustive reading

of a sorted file without overflow area

Exhaustive Reading

Improving Access Speed

 Motivation: The number of file access in an indexed file is as

many as the tree height (3 or 4 for example)

 Hashing method provides a quick access to the records (1 or

2 file access)

Questions?

Quiz

Emp.ID Name

118 Hasan

223 Mehmet

195 Emre

104 Hatice

102 Zeynep

113 Fatma

167 Tolga

142 Onur

136 Arda

•The following data has been given in a pile file. Create a B+Tree index for the data.

• Assume N=2 (4 keys, 5 pointers in each internal node)

