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Topics

® Insertion in a B-Tree

® Deletion from a B-Tree

e B+Trees




Insertion In a B-Tree

e Start searching the leaf node to insert the new record
* If the leat node is tull, split it into two nodes.
® Add the smallest key in the new leaf to the internal node.

° Update the tree if necessary




/Sample Data File

5 A
25 K
27 E
1 R
7 G
3 H
19 z
9 N
22 B
14 U
17 D
1 I
K 12 M




B-Tree of the Sample Data File (N=2)
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Insert <8, B>
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Insert <15, X> and <16, T>

22 B
14 U
17 D
11 r
12 M
8 B
15 X
16 T




Insert <15, X> and <16, T>
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Insert <4, Q>
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Insert <6, J>




Insertion when the root node is full

® If the root node is full and a new key is to be added to it,
® split the root node into two nodes
® Put last N keys in new node
® Create a new node and put the middle key in it

® Make the new node the new root. (old root and the new node

split from it will be its children)




Split the Root
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Deletion from a B-Tree

* When two leaf nodes are merged, a key is removed from the

internal node.

* If after removing a key, the internal node has less than N
keys, it is merged with its neighboring internal node. (Except
the root)

* When only one leaf node is left in the tree, the root is

removed.




Example: Delete 1




Example, Delete 1
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Example, Delete 1
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B+Trees

® B-Trees are used to find the location of a record in a data file
® The index and data files are two separate files
® B+Tree combines the data and index files in a single tree

® [ eaf nodes are used to store data records




Sample Data
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Sample B+Tree (N=2)
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Exhaustive Reading in Index Files

e Exhaustive reading from a B-Tree needs starting from the

root each time
® In a B+Tree leaf nodes are connected by pointers

e Exhaustive reading a B+Tree is as fast as exhaustive reading

of a sorted file without overflow area




Exhaustive Reading
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Improving Access Speed

® Motivation: The number of file access in an indexed file is as

many as the tree height (3 or 4 for example)

* Hashing method provides a quick access to the records (1 or

2 tile access)




Questions”?




e
Quiz

*The following data has been given in a pile file. Create a B+Tree index for the data.

* Assume N=2 (4 keys, 5 pointers in each internal node)

Emp.ID Name
118 Hasan
223 Mehmet
195 Emre
104 Hatice
102 Zeynep
113 Fatma
167 Tolga
142 Onur
\_ 136 Arda




