Data Management and File

Organization

Indexing

B-Tree Operations
B+Trees

Topics

® Insertion in a B-Tree

® Deletion from a B-Tree

e B+Trees

Insertion In a B-Tree

e Start searching the leaf node to insert the new record
* If the leat node is tull, split it into two nodes.
® Add the smallest key in the new leaf to the internal node.

° Update the tree if necessary

/Sample Data File

5 A
25 K
27 E
1 R
7 G
3 H
19 z
9 N
22 B
14 U
17 D
1 I
K 12 M

B-Tree of the Sample Data File (N=2)

12

19

P

12

14

17

10

|

.

/) <\|\
——— AT TN
19]6 25| 1
221 8 27 | 2

25

27

19

22

Insert <8, B>

5

14

\ g

19 |

17

11

12

‘H-'h-.
(9 [7] [12]12]
11 11 14| 9
17 | 10

[0
19| 6 25| 1
22 o7 | 2

Insert <15, X> and <16, T>

22 B
14 U
17 D
11 r
12 M
8 B
15 X
16 T

Insert <15, X> and <16, T>

\

|12

| 16

ey

19 |

9
11

7 1212 | (16|
11 14| 9 | [17

—_—

15

15

14

10

N

I

W |

R .,

| 2537 |
19| 6 25\“
22 |8 27
N DR [o——

Insert <4, Q>

/ 19

16 g | 3

12

0 11 |11

14

9

4

—_— re———

15

14

13

14]|9]12] 16
3 4 = ™ i Ny
5 5
=
8

12 16

T

15

17

10

=

‘ 25 | a7 .
196 25\
22 27

Insert <6, J>

Insertion when the root node is full

® If the root node is full and a new key is to be added to it,
® split the root node into two nodes
® Put last N keys in new node
® Create a new node and put the middle key in it

® Make the new node the new root. (old root and the new node

split from it will be its children)

Split the Root

A AN

19

26 | 35

@ New Root

T
/

35| |

J

Deletion from a B-Tree

* When two leaf nodes are merged, a key is removed from the

internal node.

* If after removing a key, the internal node has less than N
keys, it is merged with its neighboring internal node. (Except
the root)

* When only one leaf node is left in the tree, the root is

removed.

Example: Delete 1

Example, Delete 1

LI 4 |18 71 4] [9]7 12 [12
3| 9 2 | B 8 [13 | |11 |11 14] 9

x 6 |17 15 | 14
N B U TP

Example, Delete 1

16

D o | w

12

L

14

15

B+Trees

® B-Trees are used to find the location of a record in a data file
® The index and data files are two separate files
® B+Tree combines the data and index files in a single tree

® [eaf nodes are used to store data records

Sample Data

[Ty}

N[oo = | =

o (o2 (o))}

22222
11111

Sample B+Tree (N=2)

12

19

I“-‘-

14

17

[ﬂznb

T

/25 <\|\
P TR

19| Z 25| K

22 | B 27 | E

Exhaustive Reading in Index Files

e Exhaustive reading from a B-Tree needs starting from the

root each time
® In a B+Tree leaf nodes are connected by pointers

e Exhaustive reading a B+Tree is as fast as exhaustive reading

of a sorted file without overflow area

Exhaustive Reading

12

19 |

14

17

WV

/25 <\|\
e T

19] Z 25| K

22 | B 27 | E

[ﬂznb

Improving Access Speed

® Motivation: The number of file access in an indexed file is as

many as the tree height (3 or 4 for example)

* Hashing method provides a quick access to the records (1 or

2 tile access)

Questions”?

e
Quiz

*The following data has been given in a pile file. Create a B+Tree index for the data.

* Assume N=2 (4 keys, 5 pointers in each internal node)

Emp.ID Name
118 Hasan
223 Mehmet
195 Emre
104 Hatice
102 Zeynep
113 Fatma
167 Tolga
142 Onur
_ 136 Arda

