Data Management and File

Organization

Indexing

Topics

® Motivation
® [inear Indexing
® Tree Indexing

® B-Trees

Motivation

e Some file operations are very slow

° Exarnple: Reading all records in order of an attribute may

take several hours in a large file

® Sorting files can speed up file operations but still there are

some problems

Problems with Pile Files

* Finding a record T}, Finding next record in an order Ty, and

Deleting arecord T are very slow.

Problems with Sorted Sequential Files

* Sorting large files need external sorting which is slow

compared to the internal sorting
e File will not remain sorted after new insertions

® Search using binary search needs Log,n file access which is
slow in large files.
® Example: for a file with 16,000,000 records, 24 file access is

needed

Problems with Sorted Sequential Files

® Files are sorted according to one attribute. Searches with

other attributes need other copies of the file

Problems with Sorted Sequential Files

ID Name ID Name ID Name
4567 Mehemt 1234 Hasan 5678 Ali
2345 Sevil 2345 Sevil 3456 Ayse
5678 Ali 3456 Ayse 1234 Hasan

1234 Hasan 4567 Mehemt 4567 Mehemt
3456 Ayse 5678 Al 2345 Sevil

Pile File Sorted by ID Sorted by Name

Indexing

® Indexes are lookup tables for finding records quickly

® The simplest index is a list in order of the key values (linear

indexing)

Case 1: Linear Indexing

® [inear indexing is a sorted list of keys and record locations
® Search is done in index list before going to the main file

® Linear indexing is suitable for small files

Example: Linear Indexing

ID Name
4567 Mehemt
2345 Sevil
5678 Al
1234 Hasan
3456 Ayse

Data File

ID (key) location
1234 3
2345 1
3456 4
4567 0
5678 2

Index

Searching in an Indexed File

e (Given a key value do:
® Search the index list using binary search

® Getting the location go to the block and read the record
(S+r+btt)

® If the index list is in the memory, the search is fast

Insertion Into an Indexed File

® Insertion is done at the end of the data file

¢ Add new key value to the index file. Then the index is
updated to be sorted again

Example: Insertion into Indexed Files

ID Name
4567 Mehemt
2345 Sevil
5678 Ali
1234 Hasan
3456 Ayse
3825 Ahmet

Data File

ID (key) location
1234 3
2345 1
3456 4
3856 5
4567 0
5678 2 |l

Index

Shift Down

Case 2: Tree Indexing

® If the index list is larger than the memory, the search should
be done in the file

° Searching the index file will be slow if it is a binary search (
Logzn)

® Tree indexes are used for faster search

Review: Binary Search Trees
* A Binary SearchTree (BST) is a

® BinaryTree (at most two children at each node)
® The value of the left child is less than the current node

® The value of the right child is greater than the current node

Example: BST

Search in BST

© Algorithm:
o [f key = value at the node

Return node

® Else if key < value at the node

Search at the left sub tree (recursive call)

® Else

Search at the right sub tree

Example: Search in a BST

Trees with Higher Order

® If the height of the tree is large then the search will be slow(
more [/ O)

e For faster search we may have more children at each node.

Ex: 8, 16 or 64 children at each node

e

Example Tree

TN
AN

Tree with 4 children at each node

B-Trees

® A tree with
® Several children at each node

® All leaves are at the same level

Nodes of a B-Tree

1. Internal Nodes
Have 2N key values and 2N+1 pointers (order N)

2. Leaf nodes

Keys and record locations

All nodes except the root should be at least half full

Example Internal Node

pointer

Key1

pointer2

Key2

pointer3

Key3

pointerd

Key4

pointer5s

Structure of a B-Tree

* If the attribute value is less than a key in internal node, it is
stored at its left side leaf node

® Otherwise the attribute is compared with the next key in the

internal node.

Example B-Tree

A

OB w=a]

el e

: 15 21 || 31 37 41

47 52
?0 E 23 33 38 43 48 54
12 24 36 40 45 &0 EE

Operations on a B-Tree

® [nsertion

® |nsertion is done from the leaf nodes and the tree is updated.

Nodes may split

® Deletion

® Deletion is done from leaf nodes and nodes may merge

Insertion
* Algorithm
® Using the key value of the data item, search the tree to a leaf node.
® Insert the new data if the leat node has enough space
* Split the leaf node if there is no place to insert new data
* Update tree
Note: All nodes except the root should be at least half full

Insertion: Example

20 41

T S

(45

7 l 13 25 37
(\
1 8 15 21 31 37
P I |
x s ' 24 36 40

41
43
45

Insert 19

\

47
48
50

52
54
55

Insertion: Example

(7 l 13 18 25 \ 37 \ 46 h 51 \
1 8 15 18 21 31 37 41
3 ?0 11 ? 19 23 33 38 43 :; 2421

Insert 16

Deletion from a B-Tree
® Algorithm

® Find the leaf node containing the data item
® Remove the data item

e If the leaf node is less than half full after deletion then
Merge with neighboring leaf nodes if they have space enough
OR
Re-distribute data by using data from the neighboring nodes

* Update the tree

Example 1: Deletion

LD D

% 15 b 21 31 37 41

52
?ﬂ ‘}1 ?.- 19 23 38 43 f,g 54
12 5 36 0 45 50 55

Delete 33

Example 2: Deletion (Re-distribute)

| 13 47 ¥ L 25 37 | 4 51

7
(\ ‘.\ \\ \ 'lk \\
3 ?O 16 | 17 23 38 43 48 54
6 12 19 A 36 =t 45 50 55

Delete 18

Example 3: Deletion (Merge)

20

41

N

(,? o e |

8 15

9 16

10 17 =
12

1

N

21
23
24

4EL51‘

Ka?

\

[43]

L

Delete 19

47
48
50

Questions?

