
Indexing

Data Management and File

Organization

Topics

 Motivation

 Linear Indexing

 Tree Indexing

 B-Trees

Motivation

 Some file operations are very slow

 Example: Reading all records in order of an attribute may

take several hours in a large file

 Sorting files can speed up file operations but still there are

some problems

Problems with Pile Files

 Finding a record TF, Finding next record in an order TN, and

Deleting a record TD are very slow.

Problems with Sorted Sequential Files

 Sorting large files need external sorting which is slow

compared to the internal sorting

 File will not remain sorted after new insertions

 Search using binary search needs Log2n file access which is

slow in large files.

 Example: for a file with 16,000,000 records, 24 file access is

needed

Problems with Sorted Sequential Files

 Files are sorted according to one attribute. Searches with

other attributes need other copies of the file

Problems with Sorted Sequential Files

Indexing

 Indexes are lookup tables for finding records quickly

 The simplest index is a list in order of the key values (linear

indexing)

Case 1: Linear Indexing

 Linear indexing is a sorted list of keys and record locations

 Search is done in index list before going to the main file

 Linear indexing is suitable for small files

Example: Linear Indexing

Searching in an Indexed File

 Given a key value do:

 Search the index list using binary search

 Getting the location go to the block and read the record

(s+r+btt)

 If the index list is in the memory, the search is fast

Insertion into an Indexed File

 Insertion is done at the end of the data file

 Add new key value to the index file. Then the index is

updated to be sorted again

Example: Insertion into Indexed Files

Case 2: Tree Indexing

 If the index list is larger than the memory, the search should

be done in the file

 Searching the index file will be slow if it is a binary search (

Log2n)

 Tree indexes are used for faster search

Review: Binary Search Trees

 A Binary Search Tree (BST) is a

 Binary Tree (at most two children at each node)

 The value of the left child is less than the current node

 The value of the right child is greater than the current node

Example: BST

Search in BST

 Algorithm:

 If key = value at the node

 Return node

 Else if key < value at the node

 Search at the left sub tree (recursive call)

 Else

 Search at the right sub tree

Example: Search in a BST

Find key=11

Trees with Higher Order

 If the height of the tree is large then the search will be slow(

more I/O)

 For faster search we may have more children at each node.

Ex: 8, 16 or 64 children at each node

Example Tree

B-Trees

 A tree with

 Several children at each node

 All leaves are at the same level

Nodes of a B-Tree

1. Internal Nodes

Have 2N key values and 2N+1 pointers (order N)

2. Leaf nodes

 Keys and record locations

 All nodes except the root should be at least half full

Example Internal Node

Structure of a B-Tree

 If the attribute value is less than a key in internal node, it is

stored at its left side leaf node

 Otherwise the attribute is compared with the next key in the

internal node.

Example B-Tree

Operations on a B-Tree

 Insertion

 Insertion is done from the leaf nodes and the tree is updated.

Nodes may split

 Deletion

 Deletion is done from leaf nodes and nodes may merge

Insertion
 Algorithm

 Using the key value of the data item, search the tree to a leaf node.

 Insert the new data if the leaf node has enough space

 Split the leaf node if there is no place to insert new data

 Update tree

Note: All nodes except the root should be at least half full

Insertion: Example

Insertion: Example

Deletion from a B-Tree
 Algorithm

 Find the leaf node containing the data item

 Remove the data item

 If the leaf node is less than half full after deletion then

 Merge with neighboring leaf nodes if they have space enough

OR

 Re-distribute data by using data from the neighboring nodes

 Update the tree

Example 1: Deletion

Example 2: Deletion (Re-distribute)

Example 3: Deletion (Merge)

Questions?

