
Indexing

Data Management and File

Organization

Topics

 Motivation

 Linear Indexing

 Tree Indexing

 B-Trees

Motivation

 Some file operations are very slow

 Example: Reading all records in order of an attribute may

take several hours in a large file

 Sorting files can speed up file operations but still there are

some problems

Problems with Pile Files

 Finding a record TF, Finding next record in an order TN, and

Deleting a record TD are very slow.

Problems with Sorted Sequential Files

 Sorting large files need external sorting which is slow

compared to the internal sorting

 File will not remain sorted after new insertions

 Search using binary search needs Log2n file access which is

slow in large files.

 Example: for a file with 16,000,000 records, 24 file access is

needed

Problems with Sorted Sequential Files

 Files are sorted according to one attribute. Searches with

other attributes need other copies of the file

Problems with Sorted Sequential Files

Indexing

 Indexes are lookup tables for finding records quickly

 The simplest index is a list in order of the key values (linear

indexing)

Case 1: Linear Indexing

 Linear indexing is a sorted list of keys and record locations

 Search is done in index list before going to the main file

 Linear indexing is suitable for small files

Example: Linear Indexing

Searching in an Indexed File

 Given a key value do:

 Search the index list using binary search

 Getting the location go to the block and read the record

(s+r+btt)

 If the index list is in the memory, the search is fast

Insertion into an Indexed File

 Insertion is done at the end of the data file

 Add new key value to the index file. Then the index is

updated to be sorted again

Example: Insertion into Indexed Files

Case 2: Tree Indexing

 If the index list is larger than the memory, the search should

be done in the file

 Searching the index file will be slow if it is a binary search (

Log2n)

 Tree indexes are used for faster search

Review: Binary Search Trees

 A Binary Search Tree (BST) is a

 Binary Tree (at most two children at each node)

 The value of the left child is less than the current node

 The value of the right child is greater than the current node

Example: BST

Search in BST

 Algorithm:

 If key = value at the node

 Return node

 Else if key < value at the node

 Search at the left sub tree (recursive call)

 Else

 Search at the right sub tree

Example: Search in a BST

Find key=11

Trees with Higher Order

 If the height of the tree is large then the search will be slow(

more I/O)

 For faster search we may have more children at each node.

Ex: 8, 16 or 64 children at each node

Example Tree

B-Trees

 A tree with

 Several children at each node

 All leaves are at the same level

Nodes of a B-Tree

1. Internal Nodes

Have 2N key values and 2N+1 pointers (order N)

2. Leaf nodes

 Keys and record locations

 All nodes except the root should be at least half full

Example Internal Node

Structure of a B-Tree

 If the attribute value is less than a key in internal node, it is

stored at its left side leaf node

 Otherwise the attribute is compared with the next key in the

internal node.

Example B-Tree

Operations on a B-Tree

 Insertion

 Insertion is done from the leaf nodes and the tree is updated.

Nodes may split

 Deletion

 Deletion is done from leaf nodes and nodes may merge

Insertion
 Algorithm

 Using the key value of the data item, search the tree to a leaf node.

 Insert the new data if the leaf node has enough space

 Split the leaf node if there is no place to insert new data

 Update tree

Note: All nodes except the root should be at least half full

Insertion: Example

Insertion: Example

Deletion from a B-Tree
 Algorithm

 Find the leaf node containing the data item

 Remove the data item

 If the leaf node is less than half full after deletion then

 Merge with neighboring leaf nodes if they have space enough

OR

 Re-distribute data by using data from the neighboring nodes

 Update the tree

Example 1: Deletion

Example 2: Deletion (Re-distribute)

Example 3: Deletion (Merge)

Questions?

