
Part 1: Internal Sort Algorithms

Sorting Algorithms

Topics

 Need for sorting

 Internal and External Sorting

 Bubble sort

 Selection sort

 Quick sort

 Merge sort

Motivation

 Random file access is very slow in pile files (exhaustive

search) but almost fast in sorted sequential files (Binary or

Interpolation search)

 Example: TF in the hospital pile file with 16,667 blocks needs

7000 msec but 326 msec if sorted

Sort Algorithm Types

 Internal Sorting Algorithms: All data is in memory

 External Sorting Algorithms: Only a part of data is in

memory

 External sorting algorithms are more suitable for sorting

large files

Slow and Fast Algorithms

 Simple/Slow algorithms: The time needed by these

algorithms is of order O(n2).

 (n is the number of data items)

 Example:

 With 1,000,000 data items (records), about

1,000,000,000,000 instructions are run.

Slow and Fast Algorithms
 Fast algorithms need nlog2n instructions for sorting

O(nlog2n). These algorithms are more complex.

 Example: with 1,000,000 data items 20,000,000 instructions
are run.

 For this example, fast algorithms are 50,000 times faster

 Slow algorithms are suitable for small data sets

Internal Slow Algorithms

 Bubble Sort

 Selection Sort

Slow Algorithm 1: Bubble Sort

 Compare each data item with its next neighbor, if larger,

then swap them

 Repeat until no swap happens in a pass

Bubble Sort
First Pass

(5 1 4 2 8) (1 5 4 2 8)
(1 5 4 2 8) (1 4 5 2 8)
(1 4 5 2 8) (1 4 2 5 8)
(1 4 2 5 8) (1 4 2 5 8)

Second Pass:

(1 4 2 5 8) (1 4 2 5 8)
(1 4 2 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

Third Pass:

(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

Bubble Sort

int data[MAX], i;

bool swapped;

do

{

 swapped = false;

 for (i = 0 ; i<MAX – 1; i++)

 if(data[i] > data[i + 1])

 {

 swap(A[i], A[i + 1]);

 swapped = true;

 }

 }

 while(swapped==true);

Selection Sort

 Find the smallest value in the set and swap it with the first

element.

 Put aside the first item, repeat the above steps with the

remaining items

Selection Sort
First Pass

Find the smallest value in the set

 Smallest = 5

 (5 1 4 2 8) 1 < Smallest? Yes Smallest = 1
(5 1 4 2 8) 4 < Smallest? No
(5 1 4 2 8) 2 < Smallest? No
(5 1 4 2 8) 8 < Smallest? No

Swap(first element and smallest)

(5 1 4 2 8) (1 5 4 2 8)

Selection Sort

Second Pass

Find the smallest value in the set

Smallest = 5

(1 5 4 2 8) 4 < Smallest? Yes Smallest = 4
(1 5 4 2 8) 2 < Smallest? Yes Smallest = 2

(1 5 4 2 8) 8 < Smallest? No

Swap(second element and smallest)

(1 5 4 2 8) (1 2 4 5 8)

Selection Sort
Third Pass

Smallest = 4

(1 2 4 5 8) 5 < Smallest? No

(1 2 4 5 8) 8 < Smallest? No

No Swap

Fourth Pass

Smallest = 5

 (1 2 4 5 8) 8 < Smallest? No

No Swap

Selection Sort

int data[MAX], i;

for(j=0; j<Max -1 ; j++)

{

 smallest = data[j];

 small_index = j

 for (i = j+1 ; i<MAX ; i++)

 if(data[i] < smallest)

 {

 Smallest=data[i];

 Small_index = i;

 }

 Swap(data[j], data[small_index]);

 }

Internal Fast Algorithms

 Quick Sort

 Merge Sort

Quick Sort

 Take the first element as pivot

 Use two indexes, one starting from left the other from right

 Move the left index to right until a data item greater than the

pivot is found

 Move the right index to the left until a data item smaller than

the pivot is found

 Swap the items shown by the indexes

Quick Sort

 Repeat the above steps until indexes pass each other

 Swap pivot with the data shown by right index

 Call quick sort for left side of the pivot

 Call quick sort for the right side of the pivot

Quick Sort

Quick Sort

Pivot = data[0];
Left = 1;
Right = size-1;
while(Left < Right)
{
 while(data[Left] < Pivot)
 Left ++;
 while(data[Right] > Pivot)
 Right--;
 if(Left < Right)
 Swap(data[Left] , data[Right]);
}
Swap(data[0] , data[Right]);
QuickSort(data, Right -1);
QuickSort(&data[Left], size – Left);

Merge Sort

 If data is given as two sorted segments then we can merge

them in a single sorted part

 Assume each data item as a sorted part

 Merge each pair of parts

 Repeat until a single list is found

Example (Merge Sort)

Merge Algorithm

 Compare the top-most elements of the two lists and pick the

smaller one until the end of one of the lists is reached

 Add remaining elements from the other list

Merge

i = 0; j = 0; k = 0;

while(i< size1 && j < size2)

{ if(data1[i] < data2[j]){

 data3[k] = data1[i];

 i++; k++;

 }

 else{

 data3[k] = data2[j];

 j++; k++;

 }

}

Merge (Cont.)

if(i<size1)

 while(i< size1)

 {

 data3[k] = data1[i];

 i++; k++;

 }

else

 while(j< size2)

 {

 data3[k] = data2[j];

 j++; k++;

 }

Merge Sort

 void merge_sort(int m[] , int result[], int size)

{

 int left[size/2], right[size-size/2];

 if(size == 0) return;

 if(size == 1)

 {

 result[0] = m[0];

 return;

 }

 merge_sort(m , left, size/2);

 merge_sort(&m[size/2] , right, size – size/2) ;

 merge(left, right, result);

}

Questions?

Quiz

 Using Quick sort algorithm, sort the following data. Show

only one pass.

25, 12, 3, 31, 32, 11, 15, 2, 44, 13, 65, 5, 30, 38

