
Part 1: Internal Sort Algorithms

Sorting Algorithms

Topics

 Need for sorting

 Internal and External Sorting

 Bubble sort

 Selection sort

 Quick sort

 Merge sort

Motivation

 Random file access is very slow in pile files (exhaustive

search) but almost fast in sorted sequential files (Binary or

Interpolation search)

 Example: TF in the hospital pile file with 16,667 blocks needs

7000 msec but 326 msec if sorted

Sort Algorithm Types

 Internal Sorting Algorithms: All data is in memory

 External Sorting Algorithms: Only a part of data is in

memory

 External sorting algorithms are more suitable for sorting

large files

Slow and Fast Algorithms

 Simple/Slow algorithms: The time needed by these

algorithms is of order O(n2).

 (n is the number of data items)

 Example:

 With 1,000,000 data items (records), about

1,000,000,000,000 instructions are run.

Slow and Fast Algorithms
 Fast algorithms need nlog2n instructions for sorting

O(nlog2n). These algorithms are more complex.

 Example: with 1,000,000 data items 20,000,000 instructions
are run.

 For this example, fast algorithms are 50,000 times faster

 Slow algorithms are suitable for small data sets

Internal Slow Algorithms

 Bubble Sort

 Selection Sort

Slow Algorithm 1: Bubble Sort

 Compare each data item with its next neighbor, if larger,

then swap them

 Repeat until no swap happens in a pass

Bubble Sort
First Pass

(5 1 4 2 8)  (1 5 4 2 8)
(1 5 4 2 8)  (1 4 5 2 8)
(1 4 5 2 8)  (1 4 2 5 8)
(1 4 2 5 8)  (1 4 2 5 8)

Second Pass:

(1 4 2 5 8)  (1 4 2 5 8)
(1 4 2 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

Third Pass:

(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)
(1 2 4 5 8)  (1 2 4 5 8)

Bubble Sort

int data[MAX], i;

bool swapped;

do

{

 swapped = false;

 for (i = 0 ; i<MAX – 1; i++)

 if(data[i] > data[i + 1])

 {

 swap(A[i], A[i + 1]);

 swapped = true;

 }

 }

 while(swapped==true);

Selection Sort

 Find the smallest value in the set and swap it with the first

element.

 Put aside the first item, repeat the above steps with the

remaining items

Selection Sort
First Pass

Find the smallest value in the set

 Smallest = 5

 (5 1 4 2 8) 1 < Smallest? Yes Smallest = 1
(5 1 4 2 8) 4 < Smallest? No
(5 1 4 2 8) 2 < Smallest? No
(5 1 4 2 8) 8 < Smallest? No

Swap(first element and smallest)

(5 1 4 2 8) (1 5 4 2 8)

Selection Sort

Second Pass

Find the smallest value in the set

Smallest = 5

(1 5 4 2 8) 4 < Smallest? Yes Smallest = 4
(1 5 4 2 8) 2 < Smallest? Yes Smallest = 2

(1 5 4 2 8) 8 < Smallest? No

Swap(second element and smallest)

(1 5 4 2 8) (1 2 4 5 8)

Selection Sort
Third Pass

Smallest = 4

(1 2 4 5 8) 5 < Smallest? No

(1 2 4 5 8) 8 < Smallest? No

No Swap

Fourth Pass

Smallest = 5

 (1 2 4 5 8) 8 < Smallest? No

No Swap

Selection Sort

int data[MAX], i;

for(j=0; j<Max -1 ; j++)

{

 smallest = data[j];

 small_index = j

 for (i = j+1 ; i<MAX ; i++)

 if(data[i] < smallest)

 {

 Smallest=data[i];

 Small_index = i;

 }

 Swap(data[j], data[small_index]);

 }

Internal Fast Algorithms

 Quick Sort

 Merge Sort

Quick Sort

 Take the first element as pivot

 Use two indexes, one starting from left the other from right

 Move the left index to right until a data item greater than the

pivot is found

 Move the right index to the left until a data item smaller than

the pivot is found

 Swap the items shown by the indexes

Quick Sort

 Repeat the above steps until indexes pass each other

 Swap pivot with the data shown by right index

 Call quick sort for left side of the pivot

 Call quick sort for the right side of the pivot

Quick Sort

Quick Sort

Pivot = data[0];
Left = 1;
Right = size-1;
while(Left < Right)
{
 while(data[Left] < Pivot)
 Left ++;
 while(data[Right] > Pivot)
 Right--;
 if(Left < Right)
 Swap(data[Left] , data[Right]);
}
Swap(data[0] , data[Right]);
QuickSort(data, Right -1);
QuickSort(&data[Left], size – Left);

Merge Sort

 If data is given as two sorted segments then we can merge

them in a single sorted part

 Assume each data item as a sorted part

 Merge each pair of parts

 Repeat until a single list is found

Example (Merge Sort)

Merge Algorithm

 Compare the top-most elements of the two lists and pick the

smaller one until the end of one of the lists is reached

 Add remaining elements from the other list

Merge

i = 0; j = 0; k = 0;

while(i< size1 && j < size2)

{ if(data1[i] < data2[j]){

 data3[k] = data1[i];

 i++; k++;

 }

 else{

 data3[k] = data2[j];

 j++; k++;

 }

}

Merge (Cont.)

if(i<size1)

 while(i< size1)

 {

 data3[k] = data1[i];

 i++; k++;

 }

else

 while(j< size2)

 {

 data3[k] = data2[j];

 j++; k++;

 }

Merge Sort

 void merge_sort(int m[] , int result[], int size)

{

 int left[size/2], right[size-size/2];

 if(size == 0) return;

 if(size == 1)

 {

 result[0] = m[0];

 return;

 }

 merge_sort(m , left, size/2);

 merge_sort(&m[size/2] , right, size – size/2) ;

 merge(left, right, result);

}

Questions?

Quiz

 Using Quick sort algorithm, sort the following data. Show

only one pass.

25, 12, 3, 31, 32, 11, 15, 2, 44, 13, 65, 5, 30, 38

