
Sequential Files

Part two: Sorted Sequential Files

Data Management and File

Organization

Basic Definitions

 Sorted Sequential Files: A sequential file which is sorted

according to the value of an attribute. (This attribute is also

called key)

 Ex. The student file is sorted by “student ID” attribute.

 The main operation in a sorted sequential file is exhaustive

read (same as pile files)

Why Sorting?

Remembering from pile files, exhaustive reading of a sequential file

in order of an attribute needs

 n*TF Seconds. (Several days in hospital file example)

If we sort the file, the exhaustive read will need only a few seconds

(14 seconds in hospital file example)

 In a sorted file (or list) search is much faster.

Advantage of Sorted Sequential Files

 Instead of exhaustive (sequential) search, much faster search

algorithms such as:

 Binary search

 Interpolation search

Can be used

Disadvantage of Sorting (1)

 New insertions are expensive

Disadvantage of Sorting (2)

 Delete operation is expensive

Topics for today

 Search algorithms

 Sequential search

 Binary search

 Interpolation Search

 Timings in sorted sequential files

Search Algorithms

 Sequential Search

 Start from the first record

 Read until either the record is found or end of the file is

reached

 On average half of the records are read

Sequential Search Example

Query 1: Find record with ID=3

 3 comparisons

Query 2: Find record with ID=18

 11 comparisons

Query 3: Find record with ID=9

 8 comparisons

On average for each query N/2

comparisons are needed (N is the number

of records)

Search Algorithms
 Binary search

 Define two boundaries (up and Down) for the search area

 Find the middle of the search area: mid=(Up+Down)/2

 If the record at position “mid” has an attribute greater than key then

search in the first half

 (Down = mid)

 Else search the second half (Up=mid)

 Repeat until the record is found or Up==Down

 With Log2n read, the record is found (worst case)

Binary Search Example

Find record with ID = 5

Up = 1, Down = 13, Mid=(1+13)/2 = 7

Record[7].ID = 9 > 5 Then

 Down = Mid = 7

 Mid = (1+7)/2 =4

Record[4].ID = 5 (found)

Interpolation Search

 If the key value is closer to the record value at Up(or Down) then

mid is selected closer to Up(or Down)

Record[Up] means the attribute value at position Up, Up and Down

are index or position at the data file

Example

Find record with ID = 2

Interpolation Search

Up = 1, Down = 13

Record[Up].ID = 1

Record[Down].ID=22

Mid = (2-1)/(22-1)*(13-1)+1

Mid = 1.57 (rounded to 2)

Record found

Binary Search

Up=1, Down = 13

Mid = 7

Record[Mid] =9> 2 Then

 Down = Mid = 7

 Mid = (1+7)/2 = 4

Record[Mid] = 5> 2 Then

 Down = Mid = 5

 Mid = (1+5)/2 = 3

Record[Mid] = 3>2 Then

 Down = Mid = 3

 Mid = (3+1)/2 = 2

Record[Mid] = 2

Found

Sorted sequential file operations

Insertion in Sorted Sequential Files

 An overflow area is defined at the end of the file with unsorted

records.

Sequential File Operations and Timings

 Fetch one record TF

 Fetch next record TN

 Insert a record TI

 Update a record TU

 Delete a record TD

 Exhaustive reading of the file TX

 Re-Organize a file TY

Fetch One Record

 Find and read a record given an attribute value. Ex. File

student record with Student ID=200612345

 In a sorted sequential file, using binary search Log2n blocks

are read

 If overflow area is empty then

 TF = (s + r + btt) * Log2n

 n: number of records in the file

Example

 Find TF given:

 Total number of records (n) = 100,000

 btt = 0.8 msec

 s=16msec

 r=8.3msec

Fetch One Record

 If y blocks are in sorted area and x blocks in overflow area

then

(y/b) * (Log2y * (s+r+btt)) + (x/b) * (x/2*ebt+s+r)

 y/b : probability of having the record in sorted area

 x/b: probability of having the record in overflow area

Example

 Find TF given:

 Total number of blocks (b) = 16,667

 15,000 blocks in sorted area

 1,667 blocks in overflow area

 btt = 0.8 msec

 s=16msec

 r=8.3msec

 ebt=0.84

Fetch Next Record

 Find and read the next record in order of an attribute value.

 If the file is sorted, only in 1/Bfr cases we need to read a new

block.

 As we are on the same track, s is not considered

 TN = (1/Bfr) * (r+btt)

Fetch Next Record

Insert a Record

 Insert is always done at the overflow area

 Read the last block of the overflow area (s+r+btt)

 Add the new record and write back the block (2r)

 TI = s+r+btt+2r

Update a Record

 To update, first the block is read, then the record is updated

and the block is written back

 Time to read the block = TF

 Time to write back the block = 2r

 TU = TF + 2r

Delete a Record

 To delete a record, we mark it as deleted

 First read the block TF

 Update the mark and write the block (2r)

 TD = TF + 2r

Exhaustive Reading of a File

 Case 1: If the overflow area is empty

TX (No Overflow) = b*ebt + s + r

Ex:

b = 16667

btt = 0.84

s=16msec

r=8.3 msec

Exhaustive Reading of a File

 Case 2: There are some records in overflow area

 Read overflow area into memory: (x * ebt + s+r)

 Sort the records in the memory (time is ignored)

 Read the sorted area and merge with the records in memory (y*ebt + s+r)

Merging two sorted lists

 Algorithm

 Compare the top records of the lists and get the smaller one

 Repeat until the end of the lists are reached

Example

 Merging two lists

Re-Organizing a File

 In re-organization, the file is sorted again and the deleted

records are removed.

 Sort algorithms are discussed next week

Question?

