
Sequential Files

Part two: Sorted Sequential Files

Data Management and File

Organization

Basic Definitions

 Sorted Sequential Files: A sequential file which is sorted

according to the value of an attribute. (This attribute is also

called key)

 Ex. The student file is sorted by “student ID” attribute.

 The main operation in a sorted sequential file is exhaustive

read (same as pile files)

Why Sorting?

Remembering from pile files, exhaustive reading of a sequential file

in order of an attribute needs

 n*TF Seconds. (Several days in hospital file example)

If we sort the file, the exhaustive read will need only a few seconds

(14 seconds in hospital file example)

 In a sorted file (or list) search is much faster.

Advantage of Sorted Sequential Files

 Instead of exhaustive (sequential) search, much faster search

algorithms such as:

 Binary search

 Interpolation search

Can be used

Disadvantage of Sorting (1)

 New insertions are expensive

Disadvantage of Sorting (2)

 Delete operation is expensive

Topics for today

 Search algorithms

 Sequential search

 Binary search

 Interpolation Search

 Timings in sorted sequential files

Search Algorithms

 Sequential Search

 Start from the first record

 Read until either the record is found or end of the file is

reached

 On average half of the records are read

Sequential Search Example

Query 1: Find record with ID=3

 3 comparisons

Query 2: Find record with ID=18

 11 comparisons

Query 3: Find record with ID=9

 8 comparisons

On average for each query N/2

comparisons are needed (N is the number

of records)

Search Algorithms
 Binary search

 Define two boundaries (up and Down) for the search area

 Find the middle of the search area: mid=(Up+Down)/2

 If the record at position “mid” has an attribute greater than key then

search in the first half

 (Down = mid)

 Else search the second half (Up=mid)

 Repeat until the record is found or Up==Down

 With Log2n read, the record is found (worst case)

Binary Search Example

Find record with ID = 5

Up = 1, Down = 13, Mid=(1+13)/2 = 7

Record[7].ID = 9 > 5 Then

 Down = Mid = 7

 Mid = (1+7)/2 =4

Record[4].ID = 5 (found)

Interpolation Search

 If the key value is closer to the record value at Up(or Down) then

mid is selected closer to Up(or Down)

Record[Up] means the attribute value at position Up, Up and Down

are index or position at the data file

Example

Find record with ID = 2

Interpolation Search

Up = 1, Down = 13

Record[Up].ID = 1

Record[Down].ID=22

Mid = (2-1)/(22-1)*(13-1)+1

Mid = 1.57 (rounded to 2)

Record found

Binary Search

Up=1, Down = 13

Mid = 7

Record[Mid] =9> 2 Then

 Down = Mid = 7

 Mid = (1+7)/2 = 4

Record[Mid] = 5> 2 Then

 Down = Mid = 5

 Mid = (1+5)/2 = 3

Record[Mid] = 3>2 Then

 Down = Mid = 3

 Mid = (3+1)/2 = 2

Record[Mid] = 2

Found

Sorted sequential file operations

Insertion in Sorted Sequential Files

 An overflow area is defined at the end of the file with unsorted

records.

Sequential File Operations and Timings

 Fetch one record TF

 Fetch next record TN

 Insert a record TI

 Update a record TU

 Delete a record TD

 Exhaustive reading of the file TX

 Re-Organize a file TY

Fetch One Record

 Find and read a record given an attribute value. Ex. File

student record with Student ID=200612345

 In a sorted sequential file, using binary search Log2n blocks

are read

 If overflow area is empty then

 TF = (s + r + btt) * Log2n

 n: number of records in the file

Example

 Find TF given:

 Total number of records (n) = 100,000

 btt = 0.8 msec

 s=16msec

 r=8.3msec

Fetch One Record

 If y blocks are in sorted area and x blocks in overflow area

then

(y/b) * (Log2y * (s+r+btt)) + (x/b) * (x/2*ebt+s+r)

 y/b : probability of having the record in sorted area

 x/b: probability of having the record in overflow area

Example

 Find TF given:

 Total number of blocks (b) = 16,667

 15,000 blocks in sorted area

 1,667 blocks in overflow area

 btt = 0.8 msec

 s=16msec

 r=8.3msec

 ebt=0.84

Fetch Next Record

 Find and read the next record in order of an attribute value.

 If the file is sorted, only in 1/Bfr cases we need to read a new

block.

 As we are on the same track, s is not considered

 TN = (1/Bfr) * (r+btt)

Fetch Next Record

Insert a Record

 Insert is always done at the overflow area

 Read the last block of the overflow area (s+r+btt)

 Add the new record and write back the block (2r)

 TI = s+r+btt+2r

Update a Record

 To update, first the block is read, then the record is updated

and the block is written back

 Time to read the block = TF

 Time to write back the block = 2r

 TU = TF + 2r

Delete a Record

 To delete a record, we mark it as deleted

 First read the block TF

 Update the mark and write the block (2r)

 TD = TF + 2r

Exhaustive Reading of a File

 Case 1: If the overflow area is empty

TX (No Overflow) = b*ebt + s + r

Ex:

b = 16667

btt = 0.84

s=16msec

r=8.3 msec

Exhaustive Reading of a File

 Case 2: There are some records in overflow area

 Read overflow area into memory: (x * ebt + s+r)

 Sort the records in the memory (time is ignored)

 Read the sorted area and merge with the records in memory (y*ebt + s+r)

Merging two sorted lists

 Algorithm

 Compare the top records of the lists and get the smaller one

 Repeat until the end of the lists are reached

Example

 Merging two lists

Re-Organizing a File

 In re-organization, the file is sorted again and the deleted

records are removed.

 Sort algorithms are discussed next week

Question?

